A Generalized Approach for the Control of Micro- Electromechanical Relays
نویسنده
چکیده
MEMS (Micro-Electromechanical Systems) is an area of research and applications that is becoming increasingly popular. It's mainly concerned with integrating micro-mechanical transducers with micro-electronic circuits on common substrates, traditionally silicon, through micro-fabrication. Instead of traditionally having the transducer and the communicating (or control) circuit as two separate entities, MEMS miniaturizes and combines them on a single chip, giving it several advantages, saving space, money, and increasing the sensitivity and accuracy of the integrated system. A micro-electromechanical relay is a type of MEM devices that is becoming increasingly important in a wide range of industries such as the computer industry, the medical industry and the automotive industry, to name a few. However, micro-relays, both electrostatic and electromagnetic, share a common dynamic structure that causes an unfavorable phenomenon called pull-in in which the movable electrode comes crashing down to the fixed electrode once it reaches a certain gap spacing, possibly damaging the relay and creating undesirable output effects. To eliminate this phenomenon and have better control over the switching of the micro-relays, improving transient response and output error, a feedback control scheme is desired. In this work, it is shown that voltage-controlled electromechanical micro-relays have a common dynamic structure allowing for the formulation of a generalized model. It is also shown that openloop control of MEM relays naturally leads to pull-in during closing. An attempt has been made to control the relays eliminating this phenomenon and tracking a command signal that dictates the motion of the movable electrode over time with improved transient response. In doing so, two control schemes were adopted, a Lyapunov-based and a feedback linearization-based one. Simulation results clearly show the superiority of the closed-loop control compared to the openloop one. It's also shown that the Lyapunov-based controller was limited in the extent to which it
منابع مشابه
Hardware in Loop of a Generalized Predictive Controller for a Micro Grid DC System of Renewable Energy Sources
In this paper, a hardware in the loop simulation (HIL) is presented. This application is purposed as the first step before a real implementation of a Generalized Predictive Control (GPC) on a micro-grid system located at the Military University Campus in Cajica, Colombia. The designed GPC, looks for keep the battery bank State of Charge (SOC) over the 70% and under the 90%, what ensures the bes...
متن کاملRobust Fractional Order Control of Under-actuated Electromechanical System
This paper presents a robust fractional order controller for flexible-joint electrically driven robots under imperfect transformation of control space. The proposed approach is free from manipulator dynamics, thus free from problems associated with torque control strategy in the design and implementation. As a result, the proposed controller is simple, fast response and superior to the torque c...
متن کاملRobust Fractional Order Control of Under-actuated Electromechanical System
This paper presents a robust fractional order controller for flexible-joint electrically driven robots under imperfect transformation of control space. The proposed approach is free from manipulator dynamics, thus free from problems associated with torque control strategy in the design and implementation. As a result, the proposed controller is simple, fast response and superior to the torque c...
متن کاملEffect of Electric Potential Distribution on Electromechanical Behavior of a Piezoelectrically Sandwiched Micro-Beam
The paper deals with the mechanical behavior of a micro-beam bonded with two piezoelectric layers. The micro-beam is suspended over a fixed substrate and undergoes the both piezoelectric and electrostatic actuation. The piezoelectric layers are poled through the thickness and equipped with surface electrodes. The equation governing the micro-beam deflection under electrostatic pressure is deriv...
متن کاملRadio Frequency-micro Electromechanical System Switch with High Speed and Low Actuated Voltage
This paper presents a novel RF MEMS (Micro Electromechanical System) fixed-fixed switch for very fast switching. Using the obtained equations, the switching time depends on the stiffness and effective mass of the switch beam so that the switching time will be decreased by higher stiffness (spring constant) and lower effective mass. In new design, the suspension bridge is a three-layer beam so t...
متن کامل